pkg load signal
Preliminary Setup
graphics_toolkit("notebook")
Read the Data
load(fullfile(cd, "resources","section_01","glassDance.mat" )); whos
Variables visible from the current scope:
variables in scope: top scope
Attr Name Size Bytes Class
==== ==== ==== ===== =====
ans 1x1 1 logical
doc_file 1x84 84 char
glassclip 661500x2 10584000 double
pkg_dir 1x69 69 char
srate 1x1 8 double
Total is 1323155 elements using 10584162 bytes
help soundsc
'soundsc' is a function from the file /opt/homebrew/Caskroom/miniforge/base/envs/octave/share/octave/7.3.0/m/audio/soundsc.m
-- soundsc (Y)
-- soundsc (Y, FS)
-- soundsc (Y, FS, NBITS)
-- soundsc (..., [YMIN, YMAX])
Scale the audio data Y and play it at sample rate FS to the default
audio device.
The audio signal Y can be a vector or a two-column array,
representing mono or stereo audio, respectively.
If FS is not given, a default sample rate of 8000 samples per
second is used.
The optional argument NBITS specifies the bit depth to play to the
audio device and defaults to 8 bits.
By default, Y is automatically normalized to the range [-1, 1]. If
the range [YMIN, YMAX] is given, then elements of Y that fall
within the range YMIN ≤ Y ≤ YMAX are scaled to the range [-1, 1]
instead.
For more control over audio playback, use the ‘audioplayer’ class.
See also: sound, record.
Additional help for built-in functions and operators is
available in the online version of the manual. Use the command
'doc <topic>' to search the manual index.
Help and information about Octave is also available on the WWW
at https://www.octave.org and via the help@octave.org
mailing list.
= length(glassclip) pnts
pnts = 661500
= (0:pnts-1)/srate;whos timevec
Variables visible from the current scope:
variables in scope: top scope
Attr Name Size Bytes Class
==== ==== ==== ===== =====
ans 1x1 8 double
doc_file 1x84 84 char
glassclip 661500x2 10584000 double
pkg_dir 1x69 69 char
pnts 1x1 8 double
srate 1x1 8 double
timevec 1x661500 5292000 double
Total is 1984656 elements using 15876177 bytes
Time Domain Signal
figure(1), clf
subplot(1,2, 1:2)
plot(timevec, glassclip)
xlabel('Time (s) ')
warning: opengl_renderer::render_text: support for rendering text (FreeType) was unavailable or disabled when Octave was built
warning: called from
axes at line 107 column 8
subplot at line 335 column 18
warning: opengl_renderer: invalid image size (expected MxNx3 or MxN)
Plot shows a lot of narrow band activity
Power Spectrum
linspace(0,1,5)
ans | 1 | 2 | 3 | 4 | 5 |
1 | 0 | 0.25 | 0.5 | 0.75 | 1 |
For calculating points 1. We set range between 0 to sampling_rate/2(Nyquist?) 2. We split this range in floor(length(signal)/2)+1 points. Why? 3. We calculate power spectrum for a single channel
= 1 # Will be between 1 and 2 channel
channel = 1
floor(length(glassclip)/2) +1
ans = 330751
= linspace(0, srate/2, floor(length(glassclip)/2) +1); whos hz
Variables visible from the current scope:
variables in scope: top scope
Attr Name Size Bytes Class
==== ==== ==== ===== =====
ans 1x1 8 double
channel 1x1 8 double
doc_file 1x84 84 char
glassclip 661500x2 10584000 double
hz 1x330751 2646008 double
pkg_dir 1x69 69 char
pnts 1x1 8 double
srate 1x1 8 double
timevec 1x661500 5292000 double
Total is 2315408 elements using 18522193 bytes
1:10, 1) glassclip(
ans | 1 |
1 | 0 |
2 | 0 |
3 | 0 |
4 | 0 |
5 | 0 |
6 | 0 |
7 | 0 |
8 | 0 |
9 | 0 |
10 | 0 |
= abs(fft(glassclip(:,channel))/pnts); pow(1:10) pow
ans | 1 |
1 | 0.00012627 |
2 | 1.48464e-06 |
3 | 1.33056e-06 |
4 | 1.18443e-06 |
5 | 8.39429e-07 |
6 | 1.03065e-06 |
7 | 1.79451e-06 |
8 | 1.46856e-06 |
9 | 1.05083e-06 |
10 | 1.43139e-06 |
whos
Variables visible from the current scope:
variables in scope: top scope
Attr Name Size Bytes Class
==== ==== ==== ===== =====
ans 10x1 80 double
channel 1x1 8 double
doc_file 1x84 84 char
glassclip 661500x2 10584000 double
hz 1x330751 2646008 double
pkg_dir 1x69 69 char
pnts 1x1 8 double
pow 661500x1 5292000 double
srate 1x1 8 double
timevec 1x661500 5292000 double
Total is 2976917 elements using 23814265 bytes
figure(2), clf
subplot(311)
plot(timevec, glassclip)
xlabel('Time (s) ')
subplot(312), cla
plot(hz, pow(1:length(hz)))
xlabel('Frequency (Hz)' ), ylabel('Amplitude')
subplot(313), cla
plot(hz, pow(1:length(hz)))
set(gca, 'xlim', [100 2000], 'ylim', [0 max(pow)])
xlabel('Frequency Range Limited (Hz) '), ylabel('Amplitude')
warning: opengl_renderer: invalid image size (expected MxNx3 or MxN)
warning: opengl_renderer: invalid image size (expected MxNx3 or MxN)
warning: opengl_renderer: invalid image size (expected MxNx3 or MxN)
warning: opengl_renderer: invalid image size (expected MxNx3 or MxN)
warning: opengl_renderer: invalid image size (expected MxNx3 or MxN)
Design a FIR Filter
= [300 460] frange
frange | 1 | 2 |
1 | 300 | 460 |
= fir1(2001,frange/(srate/2),'bandpass'); fkern
fkern
fkern | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 | 301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 | 351 | 352 | 353 | 354 | 355 | 356 | 357 | 358 | 359 | 360 | 361 | 362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 | 370 | 371 | 372 | 373 | 374 | 375 | 376 | 377 | 378 | 379 | 380 | 381 | 382 | 383 | 384 | 385 | 386 | 387 | 388 | 389 | 390 | 391 | 392 | 393 | 394 | 395 | 396 | 397 | 398 | 399 | 400 | 401 | 402 | 403 | 404 | 405 | 406 | 407 | 408 | 409 | 410 | 411 | 412 | 413 | 414 | 415 | 416 | 417 | 418 | 419 | 420 | 421 | 422 | 423 | 424 | 425 | 426 | 427 | 428 | 429 | 430 | 431 | 432 | 433 | 434 | 435 | 436 | 437 | 438 | 439 | 440 | 441 | 442 | 443 | 444 | 445 | 446 | 447 | 448 | 449 | 450 | 451 | 452 | 453 | 454 | 455 | 456 | 457 | 458 | 459 | 460 | 461 | 462 | 463 | 464 | 465 | 466 | 467 | 468 | 469 | 470 | 471 | 472 | 473 | 474 | 475 | 476 | 477 | 478 | 479 | 480 | 481 | 482 | 483 | 484 | 485 | 486 | 487 | 488 | 489 | 490 | 491 | 492 | 493 | 494 | 495 | 496 | 497 | 498 | 499 | 500 | 501 | 502 | 503 | 504 | 505 | 506 | 507 | 508 | 509 | 510 | 511 | 512 | 513 | 514 | 515 | 516 | 517 | 518 | 519 | 520 | 521 | 522 | 523 | 524 | 525 | 526 | 527 | 528 | 529 | 530 | 531 | 532 | 533 | 534 | 535 | 536 | 537 | 538 | 539 | 540 | 541 | 542 | 543 | 544 | 545 | 546 | 547 | 548 | 549 | 550 | 551 | 552 | 553 | 554 | 555 | 556 | 557 | 558 | 559 | 560 | 561 | 562 | 563 | 564 | 565 | 566 | 567 | 568 | 569 | 570 | 571 | 572 | 573 | 574 | 575 | 576 | 577 | 578 | 579 | 580 | 581 | 582 | 583 | 584 | 585 | 586 | 587 | 588 | 589 | 590 | 591 | 592 | 593 | 594 | 595 | 596 | 597 | 598 | 599 | 600 | 601 | 602 | 603 | 604 | 605 | 606 | 607 | 608 | 609 | 610 | 611 | 612 | 613 | 614 | 615 | 616 | 617 | 618 | 619 | 620 | 621 | 622 | 623 | 624 | 625 | 626 | 627 | 628 | 629 | 630 | 631 | 632 | 633 | 634 | 635 | 636 | 637 | 638 | 639 | 640 | 641 | 642 | 643 | 644 | 645 | 646 | 647 | 648 | 649 | 650 | 651 | 652 | 653 | 654 | 655 | 656 | 657 | 658 | 659 | 660 | 661 | 662 | 663 | 664 | 665 | 666 | 667 | 668 | 669 | 670 | 671 | 672 | 673 | 674 | 675 | 676 | 677 | 678 | 679 | 680 | 681 | 682 | 683 | 684 | 685 | 686 | 687 | 688 | 689 | 690 | 691 | 692 | 693 | 694 | 695 | 696 | 697 | 698 | 699 | 700 | 701 | 702 | 703 | 704 | 705 | 706 | 707 | 708 | 709 | 710 | 711 | 712 | 713 | 714 | 715 | 716 | 717 | 718 | 719 | 720 | 721 | 722 | 723 | 724 | 725 | 726 | 727 | 728 | 729 | 730 | 731 | 732 | 733 | 734 | 735 | 736 | 737 | 738 | 739 | 740 | 741 | 742 | 743 | 744 | 745 | 746 | 747 | 748 | 749 | 750 | 751 | 752 | 753 | 754 | 755 | 756 | 757 | 758 | 759 | 760 | 761 | 762 | 763 | 764 | 765 | 766 | 767 | 768 | 769 | 770 | 771 | 772 | 773 | 774 | 775 | 776 | 777 | 778 | 779 | 780 | 781 | 782 | 783 | 784 | 785 | 786 | 787 | 788 | 789 | 790 | 791 | 792 | 793 | 794 | 795 | 796 | 797 | 798 | 799 | 800 | 801 | 802 | 803 | 804 | 805 | 806 | 807 | 808 | 809 | 810 | 811 | 812 | 813 | 814 | 815 | 816 | 817 | 818 | 819 | 820 | 821 | 822 | 823 | 824 | 825 | 826 | 827 | 828 | 829 | 830 | 831 | 832 | 833 | 834 | 835 | 836 | 837 | 838 | 839 | 840 | 841 | 842 | 843 | 844 | 845 | 846 | 847 | 848 | 849 | 850 | 851 | 852 | 853 | 854 | 855 | 856 | 857 | 858 | 859 | 860 | 861 | 862 | 863 | 864 | 865 | 866 | 867 | 868 | 869 | 870 | 871 | 872 | 873 | 874 | 875 | 876 | 877 | 878 | 879 | 880 | 881 | 882 | 883 | 884 | 885 | 886 | 887 | 888 | 889 | 890 | 891 | 892 | 893 | 894 | 895 | 896 | 897 | 898 | 899 | 900 | 901 | 902 | 903 | 904 | 905 | 906 | 907 | 908 | 909 | 910 | 911 | 912 | 913 | 914 | 915 | 916 | 917 | 918 | 919 | 920 | 921 | 922 | 923 | 924 | 925 | 926 | 927 | 928 | 929 | 930 | 931 | 932 | 933 | 934 | 935 | 936 | 937 | 938 | 939 | 940 | 941 | 942 | 943 | 944 | 945 | 946 | 947 | 948 | 949 | 950 | 951 | 952 | 953 | 954 | 955 | 956 | 957 | 958 | 959 | 960 | 961 | 962 | 963 | 964 | 965 | 966 | 967 | 968 | 969 | 970 | 971 | 972 | 973 | 974 | 975 | 976 | 977 | 978 | 979 | 980 | 981 | 982 | 983 | 984 | 985 | 986 | 987 | 988 | 989 | 990 | 991 | 992 | 993 | 994 | 995 | 996 | 997 | 998 | 999 | 1000 | 1001 | 1002 | 1003 | 1004 | 1005 | 1006 | 1007 | 1008 | 1009 | 1010 | 1011 | 1012 | 1013 | 1014 | 1015 | 1016 | 1017 | 1018 | 1019 | 1020 | 1021 | 1022 | 1023 | 1024 | 1025 | 1026 | 1027 | 1028 | 1029 | 1030 | 1031 | 1032 | 1033 | 1034 | 1035 | 1036 | 1037 | 1038 | 1039 | 1040 | 1041 | 1042 | 1043 | 1044 | 1045 | 1046 | 1047 | 1048 | 1049 | 1050 | 1051 | 1052 | 1053 | 1054 | 1055 | 1056 | 1057 | 1058 | 1059 | 1060 | 1061 | 1062 | 1063 | 1064 | 1065 | 1066 | 1067 | 1068 | 1069 | 1070 | 1071 | 1072 | 1073 | 1074 | 1075 | 1076 | 1077 | 1078 | 1079 | 1080 | 1081 | 1082 | 1083 | 1084 | 1085 | 1086 | 1087 | 1088 | 1089 | 1090 | 1091 | 1092 | 1093 | 1094 | 1095 | 1096 | 1097 | 1098 | 1099 | 1100 | 1101 | 1102 | 1103 | 1104 | 1105 | 1106 | 1107 | 1108 | 1109 | 1110 | 1111 | 1112 | 1113 | 1114 | 1115 | 1116 | 1117 | 1118 | 1119 | 1120 | 1121 | 1122 | 1123 | 1124 | 1125 | 1126 | 1127 | 1128 | 1129 | 1130 | 1131 | 1132 | 1133 | 1134 | 1135 | 1136 | 1137 | 1138 | 1139 | 1140 | 1141 | 1142 | 1143 | 1144 | 1145 | 1146 | 1147 | 1148 | 1149 | 1150 | 1151 | 1152 | 1153 | 1154 | 1155 | 1156 | 1157 | 1158 | 1159 | 1160 | 1161 | 1162 | 1163 | 1164 | 1165 | 1166 | 1167 | 1168 | 1169 | 1170 | 1171 | 1172 | 1173 | 1174 | 1175 | 1176 | 1177 | 1178 | 1179 | 1180 | 1181 | 1182 | 1183 | 1184 | 1185 | 1186 | 1187 | 1188 | 1189 | 1190 | 1191 | 1192 | 1193 | 1194 | 1195 | 1196 | 1197 | 1198 | 1199 | 1200 | 1201 | 1202 | 1203 | 1204 | 1205 | 1206 | 1207 | 1208 | 1209 | 1210 | 1211 | 1212 | 1213 | 1214 | 1215 | 1216 | 1217 | 1218 | 1219 | 1220 | 1221 | 1222 | 1223 | 1224 | 1225 | 1226 | 1227 | 1228 | 1229 | 1230 | 1231 | 1232 | 1233 | 1234 | 1235 | 1236 | 1237 | 1238 | 1239 | 1240 | 1241 | 1242 | 1243 | 1244 | 1245 | 1246 | 1247 | 1248 | 1249 | 1250 | 1251 | 1252 | 1253 | 1254 | 1255 | 1256 | 1257 | 1258 | 1259 | 1260 | 1261 | 1262 | 1263 | 1264 | 1265 | 1266 | 1267 | 1268 | 1269 | 1270 | 1271 | 1272 | 1273 | 1274 | 1275 | 1276 | 1277 | 1278 | 1279 | 1280 | 1281 | 1282 | 1283 | 1284 | 1285 | 1286 | 1287 | 1288 | 1289 | 1290 | 1291 | 1292 | 1293 | 1294 | 1295 | 1296 | 1297 | 1298 | 1299 | 1300 | 1301 | 1302 | 1303 | 1304 | 1305 | 1306 | 1307 | 1308 | 1309 | 1310 | 1311 | 1312 | 1313 | 1314 | 1315 | 1316 | 1317 | 1318 | 1319 | 1320 | 1321 | 1322 | 1323 | 1324 | 1325 | 1326 | 1327 | 1328 | 1329 | 1330 | 1331 | 1332 | 1333 | 1334 | 1335 | 1336 | 1337 | 1338 | 1339 | 1340 | 1341 | 1342 | 1343 | 1344 | 1345 | 1346 | 1347 | 1348 | 1349 | 1350 | 1351 | 1352 | 1353 | 1354 | 1355 | 1356 | 1357 | 1358 | 1359 | 1360 | 1361 | 1362 | 1363 | 1364 | 1365 | 1366 | 1367 | 1368 | 1369 | 1370 | 1371 | 1372 | 1373 | 1374 | 1375 | 1376 | 1377 | 1378 | 1379 | 1380 | 1381 | 1382 | 1383 | 1384 | 1385 | 1386 | 1387 | 1388 | 1389 | 1390 | 1391 | 1392 | 1393 | 1394 | 1395 | 1396 | 1397 | 1398 | 1399 | 1400 | 1401 | 1402 | 1403 | 1404 | 1405 | 1406 | 1407 | 1408 | 1409 | 1410 | 1411 | 1412 | 1413 | 1414 | 1415 | 1416 | 1417 | 1418 | 1419 | 1420 | 1421 | 1422 | 1423 | 1424 | 1425 | 1426 | 1427 | 1428 | 1429 | 1430 | 1431 | 1432 | 1433 | 1434 | 1435 | 1436 | 1437 | 1438 | 1439 | 1440 | 1441 | 1442 | 1443 | 1444 | 1445 | 1446 | 1447 | 1448 | 1449 | 1450 | 1451 | 1452 | 1453 | 1454 | 1455 | 1456 | 1457 | 1458 | 1459 | 1460 | 1461 | 1462 | 1463 | 1464 | 1465 | 1466 | 1467 | 1468 | 1469 | 1470 | 1471 | 1472 | 1473 | 1474 | 1475 | 1476 | 1477 | 1478 | 1479 | 1480 | 1481 | 1482 | 1483 | 1484 | 1485 | 1486 | 1487 | 1488 | 1489 | 1490 | 1491 | 1492 | 1493 | 1494 | 1495 | 1496 | 1497 | 1498 | 1499 | 1500 | 1501 | 1502 | 1503 | 1504 | 1505 | 1506 | 1507 | 1508 | 1509 | 1510 | 1511 | 1512 | 1513 | 1514 | 1515 | 1516 | 1517 | 1518 | 1519 | 1520 | 1521 | 1522 | 1523 | 1524 | 1525 | 1526 | 1527 | 1528 | 1529 | 1530 | 1531 | 1532 | 1533 | 1534 | 1535 | 1536 | 1537 | 1538 | 1539 | 1540 | 1541 | 1542 | 1543 | 1544 | 1545 | 1546 | 1547 | 1548 | 1549 | 1550 | 1551 | 1552 | 1553 | 1554 | 1555 | 1556 | 1557 | 1558 | 1559 | 1560 | 1561 | 1562 | 1563 | 1564 | 1565 | 1566 | 1567 | 1568 | 1569 | 1570 | 1571 | 1572 | 1573 | 1574 | 1575 | 1576 | 1577 | 1578 | 1579 | 1580 | 1581 | 1582 | 1583 | 1584 | 1585 | 1586 | 1587 | 1588 | 1589 | 1590 | 1591 | 1592 | 1593 | 1594 | 1595 | 1596 | 1597 | 1598 | 1599 | 1600 | 1601 | 1602 | 1603 | 1604 | 1605 | 1606 | 1607 | 1608 | 1609 | 1610 | 1611 | 1612 | 1613 | 1614 | 1615 | 1616 | 1617 | 1618 | 1619 | 1620 | 1621 | 1622 | 1623 | 1624 | 1625 | 1626 | 1627 | 1628 | 1629 | 1630 | 1631 | 1632 | 1633 | 1634 | 1635 | 1636 | 1637 | 1638 | 1639 | 1640 | 1641 | 1642 | 1643 | 1644 | 1645 | 1646 | 1647 | 1648 | 1649 | 1650 | 1651 | 1652 | 1653 | 1654 | 1655 | 1656 | 1657 | 1658 | 1659 | 1660 | 1661 | 1662 | 1663 | 1664 | 1665 | 1666 | 1667 | 1668 | 1669 | 1670 | 1671 | 1672 | 1673 | 1674 | 1675 | 1676 | 1677 | 1678 | 1679 | 1680 | 1681 | 1682 | 1683 | 1684 | 1685 | 1686 | 1687 | 1688 | 1689 | 1690 | 1691 | 1692 | 1693 | 1694 | 1695 | 1696 | 1697 | 1698 | 1699 | 1700 | 1701 | 1702 | 1703 | 1704 | 1705 | 1706 | 1707 | 1708 | 1709 | 1710 | 1711 | 1712 | 1713 | 1714 | 1715 | 1716 | 1717 | 1718 | 1719 | 1720 | 1721 | 1722 | 1723 | 1724 | 1725 | 1726 | 1727 | 1728 | 1729 | 1730 | 1731 | 1732 | 1733 | 1734 | 1735 | 1736 | 1737 | 1738 | 1739 | 1740 | 1741 | 1742 | 1743 | 1744 | 1745 | 1746 | 1747 | 1748 | 1749 | 1750 | 1751 | 1752 | 1753 | 1754 | 1755 | 1756 | 1757 | 1758 | 1759 | 1760 | 1761 | 1762 | 1763 | 1764 | 1765 | 1766 | 1767 | 1768 | 1769 | 1770 | 1771 | 1772 | 1773 | 1774 | 1775 | 1776 | 1777 | 1778 | 1779 | 1780 | 1781 | 1782 | 1783 | 1784 | 1785 | 1786 | 1787 | 1788 | 1789 | 1790 | 1791 | 1792 | 1793 | 1794 | 1795 | 1796 | 1797 | 1798 | 1799 | 1800 | 1801 | 1802 | 1803 | 1804 | 1805 | 1806 | 1807 | 1808 | 1809 | 1810 | 1811 | 1812 | 1813 | 1814 | 1815 | 1816 | 1817 | 1818 | 1819 | 1820 | 1821 | 1822 | 1823 | 1824 | 1825 | 1826 | 1827 | 1828 | 1829 | 1830 | 1831 | 1832 | 1833 | 1834 | 1835 | 1836 | 1837 | 1838 | 1839 | 1840 | 1841 | 1842 | 1843 | 1844 | 1845 | 1846 | 1847 | 1848 | 1849 | 1850 | 1851 | 1852 | 1853 | 1854 | 1855 | 1856 | 1857 | 1858 | 1859 | 1860 | 1861 | 1862 | 1863 | 1864 | 1865 | 1866 | 1867 | 1868 | 1869 | 1870 | 1871 | 1872 | 1873 | 1874 | 1875 | 1876 | 1877 | 1878 | 1879 | 1880 | 1881 | 1882 | 1883 | 1884 | 1885 | 1886 | 1887 | 1888 | 1889 | 1890 | 1891 | 1892 | 1893 | 1894 | 1895 | 1896 | 1897 | 1898 | 1899 | 1900 | 1901 | 1902 | 1903 | 1904 | 1905 | 1906 | 1907 | 1908 | 1909 | 1910 | 1911 | 1912 | 1913 | 1914 | 1915 | 1916 | 1917 | 1918 | 1919 | 1920 | 1921 | 1922 | 1923 | 1924 | 1925 | 1926 | 1927 | 1928 | 1929 | 1930 | 1931 | 1932 | 1933 | 1934 | 1935 | 1936 | 1937 | 1938 | 1939 | 1940 | 1941 | 1942 | 1943 | 1944 | 1945 | 1946 | 1947 | 1948 | 1949 | 1950 | 1951 | 1952 | 1953 | 1954 | 1955 | 1956 | 1957 | 1958 | 1959 | 1960 | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 |
1 | 4.29162e-05 | 4.31808e-05 | 4.33219e-05 | 4.33379e-05 | 4.32271e-05 | 4.29886e-05 | 4.26215e-05 | 4.21256e-05 | 4.1501e-05 | 4.07483e-05 | 3.98685e-05 | 3.8863e-05 | 3.77335e-05 | 3.64824e-05 | 3.51122e-05 | 3.3626e-05 | 3.20273e-05 | 3.03199e-05 | 2.85081e-05 | 2.65964e-05 | 2.45899e-05 | 2.24938e-05 | 2.03139e-05 | 1.8056e-05 | 1.57265e-05 | 1.33318e-05 | 1.08788e-05 | 8.37455e-06 | 5.82629e-06 | 3.24149e-06 | 6.27785e-07 | -2.00704e-06 | -4.65507e-06 | -7.3083e-06 | -9.95864e-06 | -1.2598e-05 | -1.52181e-05 | -1.78109e-05 | -2.03683e-05 | -2.28823e-05 | -2.53447e-05 | -2.77479e-05 | -3.00841e-05 | -3.23457e-05 | -3.45254e-05 | -3.66161e-05 | -3.86109e-05 | -4.05033e-05 | -4.22868e-05 | -4.39555e-05 | -4.55038e-05 | -4.69263e-05 | -4.82182e-05 | -4.93749e-05 | -5.03924e-05 | -5.1267e-05 | -5.19955e-05 | -5.25751e-05 | -5.30037e-05 | -5.32793e-05 | -5.34008e-05 | -5.33673e-05 | -5.31787e-05 | -5.2835e-05 | -5.23372e-05 | -5.16863e-05 | -5.08843e-05 | -4.99334e-05 | -4.88364e-05 | -4.75966e-05 | -4.62177e-05 | -4.4704e-05 | -4.30602e-05 | -4.12915e-05 | -3.94034e-05 | -3.74019e-05 | -3.52935e-05 | -3.30849e-05 | -3.07832e-05 | -2.83959e-05 | -2.59307e-05 | -2.33956e-05 | -2.07989e-05 | -1.81491e-05 | -1.54548e-05 | -1.27249e-05 | -9.96831e-06 | -7.19403e-06 | -4.41119e-06 | -1.62889e-06 | 1.14376e-06 | 3.8977e-06 | 6.62394e-06 | 9.31361e-06 | 1.1958e-05 | 1.45485e-05 | 1.70769e-05 | 1.95349e-05 | 2.19149e-05 | 2.42094e-05 | 2.6411e-05 | 2.85131e-05 | 3.05092e-05 | 3.23933e-05 | 3.41599e-05 | 3.58039e-05 | 3.73206e-05 | 3.8706e-05 | 3.99566e-05 | 4.10691e-05 | 4.20413e-05 | 4.28711e-05 | 4.35572e-05 | 4.40988e-05 | 4.44957e-05 | 4.47483e-05 | 4.48575e-05 | 4.48249e-05 | 4.46525e-05 | 4.43431e-05 | 4.38999e-05 | 4.33265e-05 | 4.26274e-05 | 4.18073e-05 | 4.08714e-05 | 3.98255e-05 | 3.86758e-05 | 3.74288e-05 | 3.60916e-05 | 3.46713e-05 | 3.31757e-05 | 3.16127e-05 | 2.99904e-05 | 2.83173e-05 | 2.66018e-05 | 2.48527e-05 | 2.30788e-05 | 2.12888e-05 | 1.94917e-05 | 1.76963e-05 | 1.59113e-05 | 1.41454e-05 | 1.2407e-05 | 1.07045e-05 | 9.0458e-06 | 7.4388e-06 | 5.89092e-06 | 4.40924e-06 | 3.00049e-06 | 1.67094e-06 | 4.26393e-07 | -7.27811e-07 | -1.78688e-06 | -2.74656e-06 | -3.60318e-06 | -4.35368e-06 | -4.99559e-06 | -5.5271e-06 | -5.94705e-06 | -6.25495e-06 | -6.45096e-06 | -6.53593e-06 | -6.51141e-06 | -6.3796e-06 | -6.14338e-06 | -5.80632e-06 | -5.37263e-06 | -4.84717e-06 | -4.2354e-06 | -3.54342e-06 | -2.7779e-06 | -1.94604e-06 | -1.05559e-06 | -1.14782e-07 | 8.67708e-07 | 1.88278e-06 | 2.92098e-06 | 3.9725e-06 | 5.02726e-06 | 6.07497e-06 | 7.10512e-06 | 8.1071e-06 | 9.07021e-06 | 9.98373e-06 | 1.0837e-05 | 1.16194e-05 | 1.23205e-05 | 1.29301e-05 | 1.34382e-05 | 1.38351e-05 | 1.41116e-05 | 1.4259e-05 | 1.42687e-05 | 1.41332e-05 | 1.38451e-05 | 1.33979e-05 | 1.27859e-05 | 1.20038e-05 | 1.10474e-05 | 9.91324e-06 | 8.59867e-06 | 7.10198e-06 | 5.42238e-06 | 3.56005e-06 | 1.51613e-06 | -7.07227e-07 | -3.10686e-06 | -5.67859e-06 | -8.4172e-06 | -1.13165e-05 | -1.43691e-05 | -1.75668e-05 | -2.09004e-05 | -2.43596e-05 | -2.79331e-05 | -3.16088e-05 | -3.53736e-05 | -3.92137e-05 | -4.31143e-05 | -4.706e-05 | -5.10345e-05 | -5.50209e-05 | -5.90018e-05 | -6.29593e-05 | -6.68747e-05 | -7.07293e-05 | -7.45039e-05 | -7.81789e-05 | -8.1735e-05 | -8.51522e-05 | -8.84111e-05 | -9.1492e-05 | -9.43754e-05 | -9.70424e-05 | -9.9474e-05 | -0.000101652 | -0.000103559 | -0.000105177 | -0.00010649 | -0.000107482 | -0.000108139 | -0.000108447 | -0.000108392 | -0.000107965 | -0.000107153 | -0.000105948 | -0.000104342 | -0.000102329 | -9.99042e-05 | -9.70636e-05 | -9.38055e-05 | -9.01298e-05 | -8.60378e-05 | -8.15326e-05 | -7.66191e-05 | -7.13036e-05 | -6.55943e-05 | -5.95011e-05 | -5.30358e-05 | -4.62115e-05 | -3.90433e-05 | -3.15478e-05 | -2.37435e-05 | -1.56501e-05 | -7.28903e-06 | 1.31674e-06 | 1.01429e-05 | 1.91638e-05 | 2.83525e-05 | 3.76808e-05 | 4.71195e-05 | 5.66383e-05 | 6.6206e-05 | 7.57907e-05 | 8.53597e-05 | 9.48796e-05 | 0.000104317 | 0.000113637 | 0.000122807 | 0.000131791 | 0.000140555 | 0.000149066 | 0.000157288 | 0.00016519 | 0.000172737 | 0.000179899 | 0.000186644 | 0.000192941 | 0.000198761 | 0.000204077 | 0.000208862 | 0.00021309 | 0.00021674 | 0.000219788 | 0.000222215 | 0.000224003 | 0.000225136 | 0.0002256 | 0.000225383 | 0.000224477 | 0.000222874 | 0.000220569 | 0.00021756 | 0.000213848 | 0.000209435 | 0.000204326 | 0.000198529 | 0.000192055 | 0.000184916 | 0.000177128 | 0.000168709 | 0.000159678 | 0.000150059 | 0.000139877 | 0.000129158 | 0.000117932 | 0.000106232 | 9.4089e-05 | 8.15402e-05 | 6.86224e-05 | 5.53743e-05 | 4.18364e-05 | 2.80505e-05 | 1.40596e-05 | -9.22056e-08 | -1.43599e-05 | -2.86976e-05 | -4.30588e-05 | -5.73968e-05 | -7.16644e-05 | -8.58143e-05 | -9.97994e-05 | -0.000113573 | -0.000127088 | -0.000140299 | -0.000153162 | -0.000165631 | -0.000177664 | -0.00018922 | -0.000200259 | -0.000210741 | -0.000220631 | -0.000229893 | -0.000238496 | -0.000246408 | -0.000253602 | -0.000260052 | -0.000265735 | -0.000270631 | -0.000274723 | -0.000277996 | -0.000280438 | -0.00028204 | -0.000282798 | -0.000282708 | -0.00028177 | -0.000279989 | -0.000277371 | -0.000273926 | -0.000269666 | -0.000264608 | -0.000258769 | -0.000252173 | -0.000244843 | -0.000236806 | -0.000228092 | -0.000218733 | -0.000208765 | -0.000198223 | -0.000187147 | -0.000175579 | -0.000163559 | -0.000151134 | -0.000138348 | -0.000125249 | -0.000111885 | -9.83045e-05 | -8.45573e-05 | -7.06936e-05 | -5.67636e-05 | -4.28178e-05 | -2.89063e-05 | -1.5079e-05 | -1.38529e-06 | 1.21265e-05 | 2.54088e-05 | 3.84153e-05 | 5.11011e-05 | 6.34228e-05 | 7.53388e-05 | 8.68095e-05 | 9.77973e-05 | 0.000108267 | 0.000118186 | 0.000127523 | 0.000136251 | 0.000144345 | 0.000151784 | 0.000158548 | 0.000164622 | 0.000169993 | 0.000174651 | 0.000178591 | 0.000181809 | 0.000184306 | 0.000186086 | 0.000187154 | 0.000187523 | 0.000187204 | 0.000186215 | 0.000184575 | 0.000182306 | 0.000179434 | 0.000175987 | 0.000171994 | 0.00016749 | 0.00016251 | 0.00015709 | 0.000151271 | 0.000145093 | 0.000138599 | 0.000131833 | 0.000124841 | 0.000117667 | 0.000110359 | 0.000102964 | 9.55296e-05 | 8.81024e-05 | 8.07296e-05 | 7.34578e-05 | 6.63328e-05 | 5.93992e-05 | 5.27007e-05 | 4.62793e-05 | 4.01755e-05 | 3.44277e-05 | 2.90726e-05 | 2.4144e-05 | 1.96738e-05 | 1.56908e-05 | 1.22212e-05 | 9.28812e-06 | 6.91142e-06 | 5.10779e-06 | 3.89051e-06 | 3.26932e-06 | 3.25041e-06 | 3.83628e-06 | 5.02572e-06 | 6.8138e-06 | 9.19179e-06 | 1.21472e-05 | 1.56639e-05 | 1.97219e-05 | 2.42977e-05 | 2.9364e-05 | 3.48904e-05 | 4.08428e-05 | 4.71839e-05 | 5.38736e-05 | 6.08683e-05 | 6.81223e-05 | 7.55869e-05 | 8.32111e-05 | 9.09419e-05 | 9.87244e-05 | 0.000106502 | 0.000114217 | 0.000121809 | 0.00012922 | 0.000136389 | 0.000143255 | 0.000149756 | 0.000155834 | 0.000161429 | 0.000166481 | 0.000170934 | 0.000174731 | 0.00017782 | 0.000180147 | 0.000181665 | 0.000182326 | 0.000182087 | 0.000180909 | 0.000178755 | 0.000175593 | 0.000171394 | 0.000166133 | 0.000159793 | 0.000152356 | 0.000143814 | 0.000134162 | 0.000123399 | 0.00011153 | 9.85676e-05 | 8.45264e-05 | 6.94284e-05 | 5.33005e-05 | 3.61751e-05 | 1.809e-05 | -9.11402e-07 | -2.07807e-05 | -4.14643e-05 | -6.29034e-05 | -8.50344e-05 | -0.000107789 | -0.000131094 | -0.000154873 | -0.000179044 | -0.000203523 | -0.00022822 | -0.000253045 | -0.000277902 | -0.000302695 | -0.000327325 | -0.00035169 | -0.000375688 | -0.000399217 | -0.000422171 | -0.000444448 | -0.000465943 | -0.000486553 | -0.000506176 | -0.000524712 | -0.000542063 | -0.000558134 | -0.00057283 | -0.000586062 | -0.000597745 | -0.000607798 | -0.000616142 | -0.000622706 | -0.000627423 | -0.000630233 | -0.000631079 | -0.000629914 | -0.000626696 | -0.000621389 | -0.000613966 | -0.000604406 | -0.000592696 | -0.000578832 | -0.000562817 | -0.000544661 | -0.000524384 | -0.000502013 | -0.000477583 | -0.00045114 | -0.000422733 | -0.000392425 | -0.000360282 | -0.00032638 | -0.000290803 | -0.000253642 | -0.000214996 | -0.000174968 | -0.000133671 | -9.12234e-05 | -4.77482e-05 | -3.37511e-06 | 4.17612e-05 | 8.75215e-05 | 0.000133762 | 0.000180337 | 0.000227094 | 0.000273881 | 0.000320543 | 0.000366923 | 0.000412863 | 0.000458205 | 0.000502791 | 0.000546463 | 0.000589065 | 0.000630443 | 0.000670445 | 0.000708924 | 0.000745734 | 0.000780735 | 0.00081379 | 0.000844771 | 0.000873553 | 0.000900017 | 0.000924053 | 0.000945557 | 0.000964434 | 0.000980597 | 0.000993968 | 0.00100448 | 0.00101206 | 0.00101667 | 0.00101827 | 0.00101683 | 0.00101233 | 0.00100475 | 0.000994101 | 0.000980396 | 0.000963656 | 0.000943915 | 0.000921218 | 0.000895619 | 0.000867186 | 0.000835993 | 0.000802127 | 0.000765685 | 0.000726771 | 0.000685501 | 0.000641998 | 0.000596394 | 0.000548831 | 0.000499454 | 0.000448419 | 0.000395888 | 0.000342027 | 0.000287008 | 0.000231008 | 0.000174209 | 0.000116795 | 5.89526e-05 | 8.71419e-07 | -5.72583e-05 | -0.000115246 | -0.0001729 | -0.00023003 | -0.000286449 | -0.00034197 | -0.00039641 | -0.000449589 | -0.000501332 | -0.00055147 | -0.000599839 | -0.000646279 | -0.000690641 | -0.00073278 | -0.000772563 | -0.000809862 | -0.000844559 | -0.000876548 | -0.000905731 | -0.00093202 | -0.000955339 | -0.000975623 | -0.000992818 | -0.00100688 | -0.00101778 | -0.0010255 | -0.00103004 | -0.00103139 | -0.00102958 | -0.00102463 | -0.00101658 | -0.0010055 | -0.000991434 | -0.000974467 | -0.000954683 | -0.000932178 | -0.000907058 | -0.000879439 | -0.000849448 | -0.000817216 | -0.000782886 | -0.000746608 | -0.000708537 | -0.000668836 | -0.000627672 | -0.000585218 | -0.000541651 | -0.000497149 | -0.000451896 | -0.000406076 | -0.000359873 | -0.000313473 | -0.00026706 | -0.000220818 | -0.000174927 | -0.000129565 | -8.49058e-05 | -4.11196e-05 | 1.62974e-06 | 4.3184e-05 | 8.33917e-05 | 0.000122109 | 0.000159199 | 0.000194535 | 0.000227998 | 0.00025948 | 0.000288882 | 0.000316117 | 0.000341107 | 0.000363788 | 0.000384106 | 0.000402018 | 0.000417496 | 0.000430522 | 0.000441091 | 0.00044921 | 0.000454899 | 0.00045819 | 0.000459127 | 0.000457766 | 0.000454174 | 0.000448431 | 0.000440627 | 0.000430863 | 0.000419249 | 0.000405905 | 0.00039096 | 0.000374554 | 0.000356831 | 0.000337944 | 0.000318051 | 0.000297318 | 0.000275914 | 0.000254013 | 0.00023179 | 0.000209424 | 0.000187095 | 0.000164984 | 0.000143271 | 0.000122134 | 0.000101749 | 8.22889e-05 | 6.39229e-05 | 4.68146e-05 | 3.11214e-05 | 1.69944e-05 | 4.57652e-06 | -5.99748e-06 | -1.46023e-05 | -2.11227e-05 | -2.54541e-05 | -2.75036e-05 | -2.71902e-05 | -2.44456e-05 | -1.92147e-05 | -1.14561e-05 | -1.14251e-06 | 1.1739e-05 | 2.71865e-05 | 4.51832e-05 | 6.56972e-05 | 8.86813e-05 | 0.000114073 | 0.000141795 | 0.000171754 | 0.000203843 | 0.000237939 | 0.000273907 | 0.000311594 | 0.000350838 | 0.000391462 | 0.000433276 | 0.00047608 | 0.000519661 | 0.000563799 | 0.000608262 | 0.000652811 | 0.000697198 | 0.000741171 | 0.000784472 | 0.000826837 | 0.000868 | 0.000907695 | 0.000945652 | 0.000981603 | 0.00101528 | 0.00104643 | 0.00107478 | 0.00110008 | 0.00112208 | 0.00114056 | 0.00115526 | 0.00116599 | 0.00117252 | 0.00117467 | 0.00117225 | 0.0011651 | 0.00115307 | 0.00113602 | 0.00111384 | 0.00108644 | 0.00105374 | 0.00101567 | 0.000972217 | 0.000923357 | 0.000869102 | 0.000809484 | 0.000744559 | 0.000674404 | 0.000599123 | 0.000518842 | 0.000433709 | 0.000343898 | 0.000249604 | 0.000151048 | 4.84705e-05 | -5.7864e-05 | -0.00016767 | -0.000280642 | -0.000396454 | -0.00051476 | -0.000635196 | -0.000757383 | -0.000880923 | -0.00100541 | -0.00113041 | -0.00125549 | -0.0013802 | -0.0015041 | -0.00162671 | -0.00174756 | -0.00186618 | -0.00198209 | -0.00209482 | -0.0022039 | -0.00230884 | -0.00240918 | -0.00250446 | -0.00259422 | -0.00267802 | -0.00275544 | -0.00282605 | -0.00288945 | -0.00294527 | -0.00299313 | -0.00303269 | -0.00306363 | -0.00308566 | -0.0030985 | -0.00310192 | -0.00309568 | -0.00307962 | -0.00305357 | -0.00301742 | -0.00297106 | -0.00291445 | -0.00284757 | -0.00277042 | -0.00268306 | -0.00258557 | -0.00247808 | -0.00236074 | -0.00223375 | -0.00209734 | -0.00195178 | -0.00179736 | -0.00163444 | -0.00146338 | -0.00128459 | -0.00109851 | -0.00090561 | -0.000706396 | -0.0005014 | -0.00029118 | -7.63243e-05 | 0.000142557 | 0.00036483 | 0.00058984 | 0.000816911 | 0.00104535 | 0.00127446 | 0.00150351 | 0.00173177 | 0.00195852 | 0.002183 | 0.00240446 | 0.00262217 | 0.00283538 | 0.00304334 | 0.00324532 | 0.00344061 | 0.00362848 | 0.00380824 | 0.00397921 | 0.00414073 | 0.00429217 | 0.00443291 | 0.00456236 | 0.00467997 | 0.00478522 | 0.00487761 | 0.00495669 | 0.00502204 | 0.00507328 | 0.00511007 | 0.00513213 | 0.00513919 | 0.00513107 | 0.00510759 | 0.00506864 | 0.00501418 | 0.00494418 | 0.00485868 | 0.00475777 | 0.00464158 | 0.00451031 | 0.0043642 | 0.00420353 | 0.00402863 | 0.00383991 | 0.00363779 | 0.00342276 | 0.00319534 | 0.00295611 | 0.00270568 | 0.00244472 | 0.00217391 | 0.00189399 | 0.00160574 | 0.00130996 | 0.00100748 | 0.000699164 | 0.000385908 | 6.86214e-05 | -0.000251761 | -0.000574289 | -0.000897995 | -0.0012219 | -0.00154502 | -0.00186637 | -0.00218494 | -0.00249975 | -0.00280981 | -0.00311413 | -0.00341175 | -0.00370171 | -0.00398307 | -0.00425491 | -0.00451633 | -0.00476647 | -0.00500448 | -0.00522956 | -0.00544094 | -0.00563787 | -0.00581968 | -0.0059857 | -0.00613533 | -0.00626801 | -0.00638324 | -0.00648055 | -0.00655955 | -0.00661988 | -0.00666126 | -0.00668344 | -0.00668625 | -0.00666958 | -0.00663337 | -0.00657761 | -0.00650239 | -0.00640782 | -0.00629408 | -0.00616144 | -0.00601019 | -0.0058407 | -0.0056534 | -0.00544877 | -0.00522734 | -0.00498972 | -0.00473654 | -0.00446851 | -0.00418637 | -0.00389091 | -0.00358296 | -0.00326342 | -0.00293319 | -0.00259323 | -0.00224452 | -0.00188809 | -0.00152498 | -0.00115626 | -0.00078302 | -0.000406364 | -2.74142e-05 | 0.000352698 | 0.000732834 | 0.00111185 | 0.00148862 | 0.00186199 | 0.00223085 | 0.00259406 | 0.00295054 | 0.0032992 | 0.00363898 | 0.00396884 | 0.00428778 | 0.00459483 | 0.00488904 | 0.00516951 | 0.00543538 | 0.00568585 | 0.00592013 | 0.00613752 | 0.00633733 | 0.00651896 | 0.00668185 | 0.00682549 | 0.00694944 | 0.00705333 | 0.00713683 | 0.00719967 | 0.00724168 | 0.00726272 | 0.00726272 | 0.00724168 | 0.00719967 | 0.00713683 | 0.00705333 | 0.00694944 | 0.00682549 | 0.00668185 | 0.00651896 | 0.00633733 | 0.00613752 | 0.00592013 | 0.00568585 | 0.00543538 | 0.00516951 | 0.00488904 | 0.00459483 | 0.00428778 | 0.00396884 | 0.00363898 | 0.0032992 | 0.00295054 | 0.00259406 | 0.00223085 | 0.00186199 | 0.00148862 | 0.00111185 | 0.000732834 | 0.000352698 | -2.74142e-05 | -0.000406364 | -0.00078302 | -0.00115626 | -0.00152498 | -0.00188809 | -0.00224452 | -0.00259323 | -0.00293319 | -0.00326342 | -0.00358296 | -0.00389091 | -0.00418637 | -0.00446851 | -0.00473654 | -0.00498972 | -0.00522734 | -0.00544877 | -0.0056534 | -0.0058407 | -0.00601019 | -0.00616144 | -0.00629408 | -0.00640782 | -0.00650239 | -0.00657761 | -0.00663337 | -0.00666958 | -0.00668625 | -0.00668344 | -0.00666126 | -0.00661988 | -0.00655955 | -0.00648055 | -0.00638324 | -0.00626801 | -0.00613533 | -0.0059857 | -0.00581968 | -0.00563787 | -0.00544094 | -0.00522956 | -0.00500448 | -0.00476647 | -0.00451633 | -0.00425491 | -0.00398307 | -0.00370171 | -0.00341175 | -0.00311413 | -0.00280981 | -0.00249975 | -0.00218494 | -0.00186637 | -0.00154502 | -0.0012219 | -0.000897995 | -0.000574289 | -0.000251761 | 6.86214e-05 | 0.000385908 | 0.000699164 | 0.00100748 | 0.00130996 | 0.00160574 | 0.00189399 | 0.00217391 | 0.00244472 | 0.00270568 | 0.00295611 | 0.00319534 | 0.00342276 | 0.00363779 | 0.00383991 | 0.00402863 | 0.00420353 | 0.0043642 | 0.00451031 | 0.00464158 | 0.00475777 | 0.00485868 | 0.00494418 | 0.00501418 | 0.00506864 | 0.00510759 | 0.00513107 | 0.00513919 | 0.00513213 | 0.00511007 | 0.00507328 | 0.00502204 | 0.00495669 | 0.00487761 | 0.00478522 | 0.00467997 | 0.00456236 | 0.00443291 | 0.00429217 | 0.00414073 | 0.00397921 | 0.00380824 | 0.00362848 | 0.00344061 | 0.00324532 | 0.00304334 | 0.00283538 | 0.00262217 | 0.00240446 | 0.002183 | 0.00195852 | 0.00173177 | 0.00150351 | 0.00127446 | 0.00104535 | 0.000816911 | 0.00058984 | 0.00036483 | 0.000142557 | -7.63243e-05 | -0.00029118 | -0.0005014 | -0.000706396 | -0.00090561 | -0.00109851 | -0.00128459 | -0.00146338 | -0.00163444 | -0.00179736 | -0.00195178 | -0.00209734 | -0.00223375 | -0.00236074 | -0.00247808 | -0.00258557 | -0.00268306 | -0.00277042 | -0.00284757 | -0.00291445 | -0.00297106 | -0.00301742 | -0.00305357 | -0.00307962 | -0.00309568 | -0.00310192 | -0.0030985 | -0.00308566 | -0.00306363 | -0.00303269 | -0.00299313 | -0.00294527 | -0.00288945 | -0.00282605 | -0.00275544 | -0.00267802 | -0.00259422 | -0.00250446 | -0.00240918 | -0.00230884 | -0.0022039 | -0.00209482 | -0.00198209 | -0.00186618 | -0.00174756 | -0.00162671 | -0.0015041 | -0.0013802 | -0.00125549 | -0.00113041 | -0.00100541 | -0.000880923 | -0.000757383 | -0.000635196 | -0.00051476 | -0.000396454 | -0.000280642 | -0.00016767 | -5.7864e-05 | 4.84705e-05 | 0.000151048 | 0.000249604 | 0.000343898 | 0.000433709 | 0.000518842 | 0.000599123 | 0.000674404 | 0.000744559 | 0.000809484 | 0.000869102 | 0.000923357 | 0.000972217 | 0.00101567 | 0.00105374 | 0.00108644 | 0.00111384 | 0.00113602 | 0.00115307 | 0.0011651 | 0.00117225 | 0.00117467 | 0.00117252 | 0.00116599 | 0.00115526 | 0.00114056 | 0.00112208 | 0.00110008 | 0.00107478 | 0.00104643 | 0.00101528 | 0.000981603 | 0.000945652 | 0.000907695 | 0.000868 | 0.000826837 | 0.000784472 | 0.000741171 | 0.000697198 | 0.000652811 | 0.000608262 | 0.000563799 | 0.000519661 | 0.00047608 | 0.000433276 | 0.000391462 | 0.000350838 | 0.000311594 | 0.000273907 | 0.000237939 | 0.000203843 | 0.000171754 | 0.000141795 | 0.000114073 | 8.86813e-05 | 6.56972e-05 | 4.51832e-05 | 2.71865e-05 | 1.1739e-05 | -1.14251e-06 | -1.14561e-05 | -1.92147e-05 | -2.44456e-05 | -2.71902e-05 | -2.75036e-05 | -2.54541e-05 | -2.11227e-05 | -1.46023e-05 | -5.99748e-06 | 4.57652e-06 | 1.69944e-05 | 3.11214e-05 | 4.68146e-05 | 6.39229e-05 | 8.22889e-05 | 0.000101749 | 0.000122134 | 0.000143271 | 0.000164984 | 0.000187095 | 0.000209424 | 0.00023179 | 0.000254013 | 0.000275914 | 0.000297318 | 0.000318051 | 0.000337944 | 0.000356831 | 0.000374554 | 0.00039096 | 0.000405905 | 0.000419249 | 0.000430863 | 0.000440627 | 0.000448431 | 0.000454174 | 0.000457766 | 0.000459127 | 0.00045819 | 0.000454899 | 0.00044921 | 0.000441091 | 0.000430522 | 0.000417496 | 0.000402018 | 0.000384106 | 0.000363788 | 0.000341107 | 0.000316117 | 0.000288882 | 0.00025948 | 0.000227998 | 0.000194535 | 0.000159199 | 0.000122109 | 8.33917e-05 | 4.3184e-05 | 1.62974e-06 | -4.11196e-05 | -8.49058e-05 | -0.000129565 | -0.000174927 | -0.000220818 | -0.00026706 | -0.000313473 | -0.000359873 | -0.000406076 | -0.000451896 | -0.000497149 | -0.000541651 | -0.000585218 | -0.000627672 | -0.000668836 | -0.000708537 | -0.000746608 | -0.000782886 | -0.000817216 | -0.000849448 | -0.000879439 | -0.000907058 | -0.000932178 | -0.000954683 | -0.000974467 | -0.000991434 | -0.0010055 | -0.00101658 | -0.00102463 | -0.00102958 | -0.00103139 | -0.00103004 | -0.0010255 | -0.00101778 | -0.00100688 | -0.000992818 | -0.000975623 | -0.000955339 | -0.00093202 | -0.000905731 | -0.000876548 | -0.000844559 | -0.000809862 | -0.000772563 | -0.00073278 | -0.000690641 | -0.000646279 | -0.000599839 | -0.00055147 | -0.000501332 | -0.000449589 | -0.00039641 | -0.00034197 | -0.000286449 | -0.00023003 | -0.0001729 | -0.000115246 | -5.72583e-05 | 8.71419e-07 | 5.89526e-05 | 0.000116795 | 0.000174209 | 0.000231008 | 0.000287008 | 0.000342027 | 0.000395888 | 0.000448419 | 0.000499454 | 0.000548831 | 0.000596394 | 0.000641998 | 0.000685501 | 0.000726771 | 0.000765685 | 0.000802127 | 0.000835993 | 0.000867186 | 0.000895619 | 0.000921218 | 0.000943915 | 0.000963656 | 0.000980396 | 0.000994101 | 0.00100475 | 0.00101233 | 0.00101683 | 0.00101827 | 0.00101667 | 0.00101206 | 0.00100448 | 0.000993968 | 0.000980597 | 0.000964434 | 0.000945557 | 0.000924053 | 0.000900017 | 0.000873553 | 0.000844771 | 0.00081379 | 0.000780735 | 0.000745734 | 0.000708924 | 0.000670445 | 0.000630443 | 0.000589065 | 0.000546463 | 0.000502791 | 0.000458205 | 0.000412863 | 0.000366923 | 0.000320543 | 0.000273881 | 0.000227094 | 0.000180337 | 0.000133762 | 8.75215e-05 | 4.17612e-05 | -3.37511e-06 | -4.77482e-05 | -9.12234e-05 | -0.000133671 | -0.000174968 | -0.000214996 | -0.000253642 | -0.000290803 | -0.00032638 | -0.000360282 | -0.000392425 | -0.000422733 | -0.00045114 | -0.000477583 | -0.000502013 | -0.000524384 | -0.000544661 | -0.000562817 | -0.000578832 | -0.000592696 | -0.000604406 | -0.000613966 | -0.000621389 | -0.000626696 | -0.000629914 | -0.000631079 | -0.000630233 | -0.000627423 | -0.000622706 | -0.000616142 | -0.000607798 | -0.000597745 | -0.000586062 | -0.00057283 | -0.000558134 | -0.000542063 | -0.000524712 | -0.000506176 | -0.000486553 | -0.000465943 | -0.000444448 | -0.000422171 | -0.000399217 | -0.000375688 | -0.00035169 | -0.000327325 | -0.000302695 | -0.000277902 | -0.000253045 | -0.00022822 | -0.000203523 | -0.000179044 | -0.000154873 | -0.000131094 | -0.000107789 | -8.50344e-05 | -6.29034e-05 | -4.14643e-05 | -2.07807e-05 | -9.11402e-07 | 1.809e-05 | 3.61751e-05 | 5.33005e-05 | 6.94284e-05 | 8.45264e-05 | 9.85676e-05 | 0.00011153 | 0.000123399 | 0.000134162 | 0.000143814 | 0.000152356 | 0.000159793 | 0.000166133 | 0.000171394 | 0.000175593 | 0.000178755 | 0.000180909 | 0.000182087 | 0.000182326 | 0.000181665 | 0.000180147 | 0.00017782 | 0.000174731 | 0.000170934 | 0.000166481 | 0.000161429 | 0.000155834 | 0.000149756 | 0.000143255 | 0.000136389 | 0.00012922 | 0.000121809 | 0.000114217 | 0.000106502 | 9.87244e-05 | 9.09419e-05 | 8.32111e-05 | 7.55869e-05 | 6.81223e-05 | 6.08683e-05 | 5.38736e-05 | 4.71839e-05 | 4.08428e-05 | 3.48904e-05 | 2.9364e-05 | 2.42977e-05 | 1.97219e-05 | 1.56639e-05 | 1.21472e-05 | 9.19179e-06 | 6.8138e-06 | 5.02572e-06 | 3.83628e-06 | 3.25041e-06 | 3.26932e-06 | 3.89051e-06 | 5.10779e-06 | 6.91142e-06 | 9.28812e-06 | 1.22212e-05 | 1.56908e-05 | 1.96738e-05 | 2.4144e-05 | 2.90726e-05 | 3.44277e-05 | 4.01755e-05 | 4.62793e-05 | 5.27007e-05 | 5.93992e-05 | 6.63328e-05 | 7.34578e-05 | 8.07296e-05 | 8.81024e-05 | 9.55296e-05 | 0.000102964 | 0.000110359 | 0.000117667 | 0.000124841 | 0.000131833 | 0.000138599 | 0.000145093 | 0.000151271 | 0.00015709 | 0.00016251 | 0.00016749 | 0.000171994 | 0.000175987 | 0.000179434 | 0.000182306 | 0.000184575 | 0.000186215 | 0.000187204 | 0.000187523 | 0.000187154 | 0.000186086 | 0.000184306 | 0.000181809 | 0.000178591 | 0.000174651 | 0.000169993 | 0.000164622 | 0.000158548 | 0.000151784 | 0.000144345 | 0.000136251 | 0.000127523 | 0.000118186 | 0.000108267 | 9.77973e-05 | 8.68095e-05 | 7.53388e-05 | 6.34228e-05 | 5.11011e-05 | 3.84153e-05 | 2.54088e-05 | 1.21265e-05 | -1.38529e-06 | -1.5079e-05 | -2.89063e-05 | -4.28178e-05 | -5.67636e-05 | -7.06936e-05 | -8.45573e-05 | -9.83045e-05 | -0.000111885 | -0.000125249 | -0.000138348 | -0.000151134 | -0.000163559 | -0.000175579 | -0.000187147 | -0.000198223 | -0.000208765 | -0.000218733 | -0.000228092 | -0.000236806 | -0.000244843 | -0.000252173 | -0.000258769 | -0.000264608 | -0.000269666 | -0.000273926 | -0.000277371 | -0.000279989 | -0.00028177 | -0.000282708 | -0.000282798 | -0.00028204 | -0.000280438 | -0.000277996 | -0.000274723 | -0.000270631 | -0.000265735 | -0.000260052 | -0.000253602 | -0.000246408 | -0.000238496 | -0.000229893 | -0.000220631 | -0.000210741 | -0.000200259 | -0.00018922 | -0.000177664 | -0.000165631 | -0.000153162 | -0.000140299 | -0.000127088 | -0.000113573 | -9.97994e-05 | -8.58143e-05 | -7.16644e-05 | -5.73968e-05 | -4.30588e-05 | -2.86976e-05 | -1.43599e-05 | -9.22056e-08 | 1.40596e-05 | 2.80505e-05 | 4.18364e-05 | 5.53743e-05 | 6.86224e-05 | 8.15402e-05 | 9.4089e-05 | 0.000106232 | 0.000117932 | 0.000129158 | 0.000139877 | 0.000150059 | 0.000159678 | 0.000168709 | 0.000177128 | 0.000184916 | 0.000192055 | 0.000198529 | 0.000204326 | 0.000209435 | 0.000213848 | 0.00021756 | 0.000220569 | 0.000222874 | 0.000224477 | 0.000225383 | 0.0002256 | 0.000225136 | 0.000224003 | 0.000222215 | 0.000219788 | 0.00021674 | 0.00021309 | 0.000208862 | 0.000204077 | 0.000198761 | 0.000192941 | 0.000186644 | 0.000179899 | 0.000172737 | 0.00016519 | 0.000157288 | 0.000149066 | 0.000140555 | 0.000131791 | 0.000122807 | 0.000113637 | 0.000104317 | 9.48796e-05 | 8.53597e-05 | 7.57907e-05 | 6.6206e-05 | 5.66383e-05 | 4.71195e-05 | 3.76808e-05 | 2.83525e-05 | 1.91638e-05 | 1.01429e-05 | 1.31674e-06 | -7.28903e-06 | -1.56501e-05 | -2.37435e-05 | -3.15478e-05 | -3.90433e-05 | -4.62115e-05 | -5.30358e-05 | -5.95011e-05 | -6.55943e-05 | -7.13036e-05 | -7.66191e-05 | -8.15326e-05 | -8.60378e-05 | -9.01298e-05 | -9.38055e-05 | -9.70636e-05 | -9.99042e-05 | -0.000102329 | -0.000104342 | -0.000105948 | -0.000107153 | -0.000107965 | -0.000108392 | -0.000108447 | -0.000108139 | -0.000107482 | -0.00010649 | -0.000105177 | -0.000103559 | -0.000101652 | -9.9474e-05 | -9.70424e-05 | -9.43754e-05 | -9.1492e-05 | -8.84111e-05 | -8.51522e-05 | -8.1735e-05 | -7.81789e-05 | -7.45039e-05 | -7.07293e-05 | -6.68747e-05 | -6.29593e-05 | -5.90018e-05 | -5.50209e-05 | -5.10345e-05 | -4.706e-05 | -4.31143e-05 | -3.92137e-05 | -3.53736e-05 | -3.16088e-05 | -2.79331e-05 | -2.43596e-05 | -2.09004e-05 | -1.75668e-05 | -1.43691e-05 | -1.13165e-05 | -8.4172e-06 | -5.67859e-06 | -3.10686e-06 | -7.07227e-07 | 1.51613e-06 | 3.56005e-06 | 5.42238e-06 | 7.10198e-06 | 8.59867e-06 | 9.91324e-06 | 1.10474e-05 | 1.20038e-05 | 1.27859e-05 | 1.33979e-05 | 1.38451e-05 | 1.41332e-05 | 1.42687e-05 | 1.4259e-05 | 1.41116e-05 | 1.38351e-05 | 1.34382e-05 | 1.29301e-05 | 1.23205e-05 | 1.16194e-05 | 1.0837e-05 | 9.98373e-06 | 9.07021e-06 | 8.1071e-06 | 7.10512e-06 | 6.07497e-06 | 5.02726e-06 | 3.9725e-06 | 2.92098e-06 | 1.88278e-06 | 8.67708e-07 | -1.14782e-07 | -1.05559e-06 | -1.94604e-06 | -2.7779e-06 | -3.54342e-06 | -4.2354e-06 | -4.84717e-06 | -5.37263e-06 | -5.80632e-06 | -6.14338e-06 | -6.3796e-06 | -6.51141e-06 | -6.53593e-06 | -6.45096e-06 | -6.25495e-06 | -5.94705e-06 | -5.5271e-06 | -4.99559e-06 | -4.35368e-06 | -3.60318e-06 | -2.74656e-06 | -1.78688e-06 | -7.27811e-07 | 4.26393e-07 | 1.67094e-06 | 3.00049e-06 | 4.40924e-06 | 5.89092e-06 | 7.4388e-06 | 9.0458e-06 | 1.07045e-05 | 1.2407e-05 | 1.41454e-05 | 1.59113e-05 | 1.76963e-05 | 1.94917e-05 | 2.12888e-05 | 2.30788e-05 | 2.48527e-05 | 2.66018e-05 | 2.83173e-05 | 2.99904e-05 | 3.16127e-05 | 3.31757e-05 | 3.46713e-05 | 3.60916e-05 | 3.74288e-05 | 3.86758e-05 | 3.98255e-05 | 4.08714e-05 | 4.18073e-05 | 4.26274e-05 | 4.33265e-05 | 4.38999e-05 | 4.43431e-05 | 4.46525e-05 | 4.48249e-05 | 4.48575e-05 | 4.47483e-05 | 4.44957e-05 | 4.40988e-05 | 4.35572e-05 | 4.28711e-05 | 4.20413e-05 | 4.10691e-05 | 3.99566e-05 | 3.8706e-05 | 3.73206e-05 | 3.58039e-05 | 3.41599e-05 | 3.23933e-05 | 3.05092e-05 | 2.85131e-05 | 2.6411e-05 | 2.42094e-05 | 2.19149e-05 | 1.95349e-05 | 1.70769e-05 | 1.45485e-05 | 1.1958e-05 | 9.31361e-06 | 6.62394e-06 | 3.8977e-06 | 1.14376e-06 | -1.62889e-06 | -4.41119e-06 | -7.19403e-06 | -9.96831e-06 | -1.27249e-05 | -1.54548e-05 | -1.81491e-05 | -2.07989e-05 | -2.33956e-05 | -2.59307e-05 | -2.83959e-05 | -3.07832e-05 | -3.30849e-05 | -3.52935e-05 | -3.74019e-05 | -3.94034e-05 | -4.12915e-05 | -4.30602e-05 | -4.4704e-05 | -4.62177e-05 | -4.75966e-05 | -4.88364e-05 | -4.99334e-05 | -5.08843e-05 | -5.16863e-05 | -5.23372e-05 | -5.2835e-05 | -5.31787e-05 | -5.33673e-05 | -5.34008e-05 | -5.32793e-05 | -5.30037e-05 | -5.25751e-05 | -5.19955e-05 | -5.1267e-05 | -5.03924e-05 | -4.93749e-05 | -4.82182e-05 | -4.69263e-05 | -4.55038e-05 | -4.39555e-05 | -4.22868e-05 | -4.05033e-05 | -3.86109e-05 | -3.66161e-05 | -3.45254e-05 | -3.23457e-05 | -3.00841e-05 | -2.77479e-05 | -2.53447e-05 | -2.28823e-05 | -2.03683e-05 | -1.78109e-05 | -1.52181e-05 | -1.2598e-05 | -9.95864e-06 | -7.3083e-06 | -4.65507e-06 | -2.00704e-06 | 6.27785e-07 | 3.24149e-06 | 5.82629e-06 | 8.37455e-06 | 1.08788e-05 | 1.33318e-05 | 1.57265e-05 | 1.8056e-05 | 2.03139e-05 | 2.24938e-05 | 2.45899e-05 | 2.65964e-05 | 2.85081e-05 | 3.03199e-05 | 3.20273e-05 | 3.3626e-05 | 3.51122e-05 | 3.64824e-05 | 3.77335e-05 | 3.8863e-05 | 3.98685e-05 | 4.07483e-05 | 4.1501e-05 | 4.21256e-05 | 4.26215e-05 | 4.29886e-05 | 4.32271e-05 | 4.33379e-05 | 4.33219e-05 | 4.31808e-05 | 4.29162e-05 |
:,1) = filtfilt(fkern, 1, glassclip(:,1));
filtglass(:,2) = filtfilt(fkern, 1, glassclip(:,2));
filtglass(1:10,:) filtglass(
ans | 1 | 2 |
1 | -3.51718e-22 | 2.8002e-21 |
2 | -6.28728e-08 | -6.60062e-07 |
3 | -1.28644e-07 | -1.32039e-06 |
4 | -2.00192e-07 | -1.98126e-06 |
5 | -2.80361e-07 | -2.64291e-06 |
6 | -3.71938e-07 | -3.30556e-06 |
7 | -4.77639e-07 | -3.96942e-06 |
8 | -6.00091e-07 | -4.63464e-06 |
9 | -7.4181e-07 | -5.30133e-06 |
10 | -9.05189e-07 | -5.96957e-06 |
= abs(fft(filtglass(:,1))/pnts);
pow_filt 1:10) pow_filt(
ans | 1 |
1 | 2.93672e-06 |
2 | 2.93672e-06 |
3 | 2.93672e-06 |
4 | 2.93672e-06 |
5 | 2.93672e-06 |
6 | 2.93672e-06 |
7 | 2.93672e-06 |
8 | 2.93672e-06 |
9 | 2.93672e-06 |
10 | 2.93673e-06 |
figure(3), clf
subplot(311)
plot(timevec, glassclip)
xlabel('Time (s) ')
hold on
plot(timevec, filtglass)
hold off
subplot(312), cla
plot(hz, pow(1:length(hz)))
xlabel('Frequency (Hz)' ), ylabel('Amplitude')
subplot(313), cla
plot(hz, pow(1:length(hz)))
set(gca, 'xlim', [100 2000], 'ylim', [0 max(pow)])
xlabel('Frequency Range Limited (Hz) '), ylabel('Amplitude')
hold on
plot(hz, pow_filt(1:length(hz)), 'r')
hold off
warning: opengl_renderer: invalid image size (expected MxNx3 or MxN)
warning: opengl_renderer: invalid image size (expected MxNx3 or MxN)
warning: opengl_renderer: invalid image size (expected MxNx3 or MxN)
warning: opengl_renderer: invalid image size (expected MxNx3 or MxN)
warning: opengl_renderer: invalid image size (expected MxNx3 or MxN)
Spectogram (Time Frequency Response)
- Time on x-axis
- Frequency on y-axis
- Color blob energy at that point
help specgram
'specgram' is a function from the file /home/rahuketu/.local/share/octave/api-v57/packages/signal-1.4.5/specgram.m
-- Function File: specgram (X)
-- Function File: specgram (X, N)
-- Function File: specgram (X, N, FS)
-- Function File: specgram (X, N, FS, WINDOW)
-- Function File: specgram (X, N, FS, WINDOW, OVERLAP)
-- Function File: [S, F, T] = specgram (...)
Generate a spectrogram for the signal X. The signal is chopped
into overlapping segments of length N, and each segment is windowed
and transformed into the frequency domain using the FFT. The
default segment size is 256. If FS is given, it specifies the
sampling rate of the input signal. The argument WINDOW specifies
an alternate window to apply rather than the default of ‘hanning
(N)’. The argument OVERLAP specifies the number of samples overlap
between successive segments of the input signal. The default
overlap is ‘length (WINDOW)/2’.
If no output arguments are given, the spectrogram is displayed.
Otherwise, S is the complex output of the FFT, one row per slice, F
is the frequency indices corresponding to the rows of S, and T is
the time indices corresponding to the columns of S.
Example:
x = chirp([0:0.001:2],0,2,500); # freq. sweep from 0-500 over 2 sec.
Fs=1000; # sampled every 0.001 sec so rate is 1 kHz
step=ceil(20*Fs/1000); # one spectral slice every 20 ms
window=ceil(100*Fs/1000); # 100 ms data window
specgram(x, 2^nextpow2(window), Fs, window, window-step);
## Speech spectrogram
[x, Fs] = auload(file_in_loadpath("sample.wav")); # audio file
step = fix(5*Fs/1000); # one spectral slice every 5 ms
window = fix(40*Fs/1000); # 40 ms data window
fftn = 2^nextpow2(window); # next highest power of 2
[S, f, t] = specgram(x, fftn, Fs, window, window-step);
S = abs(S(2:fftn*4000/Fs,:)); # magnitude in range 0<f<=4000 Hz.
S = S/max(S(:)); # normalize magnitude so that max is 0 dB.
S = max(S, 10^(-40/10)); # clip below -40 dB.
S = min(S, 10^(-3/10)); # clip above -3 dB.
imagesc (t, f, log(S)); # display in log scale
set (gca, "ydir", "normal"); # put the 'y' direction in the correct direction
The choice of window defines the time-frequency resolution. In
speech for example, a wide window shows more harmonic detail while
a narrow window averages over the harmonic detail and shows more
formant structure. The shape of the window is not so critical so
long as it goes gradually to zero on the ends.
Step size (which is window length minus overlap) controls the
horizontal scale of the spectrogram. Decrease it to stretch, or
increase it to compress. Increasing step size will reduce time
resolution, but decreasing it will not improve it much beyond the
limits imposed by the window size (you do gain a little bit,
depending on the shape of your window, as the peak of the window
slides over peaks in the signal energy). The range 1-5 msec is
good for speech.
FFT length controls the vertical scale. Selecting an FFT length
greater than the window length does not add any information to the
spectrum, but it is a good way to interpolate between frequency
points which can make for prettier spectrograms.
After you have generated the spectral slices, there are a number of
decisions for displaying them. First the phase information is
discarded and the energy normalized:
S = abs(S); S = S/max(S(:));
Then the dynamic range of the signal is chosen. Since information
in speech is well above the noise floor, it makes sense to
eliminate any dynamic range at the bottom end. This is done by
taking the max of the magnitude and some minimum energy such as
minE=-40dB. Similarly, there is not much information in the very
top of the range, so clipping to a maximum energy such as maxE=-3dB
makes sense:
S = max(S, 10^(minE/10)); S = min(S, 10^(maxE/10));
The frequency range of the FFT is from 0 to the Nyquist frequency
of one half the sampling rate. If the signal of interest is band
limited, you do not need to display the entire frequency range. In
speech for example, most of the signal is below 4 kHz, so there is
no reason to display up to the Nyquist frequency of 10 kHz for a 20
kHz sampling rate. In this case you will want to keep only the
first 40% of the rows of the returned S and f. More generally, to
display the frequency range [minF, maxF], you could use the
following row index:
idx = (f >= minF & f <= maxF);
Then there is the choice of colormap. A brightness varying
colormap such as copper or bone gives good shape to the ridges and
valleys. A hue varying colormap such as jet or hsv gives an
indication of the steepness of the slopes. The final spectrogram
is displayed in log energy scale and by convention has low
frequencies on the bottom of the image:
imagesc(t, f, flipud(log(S(idx,:))));
Additional help for built-in functions and operators is
available in the online version of the manual. Use the command
'doc <topic>' to search the manual index.
Help and information about Octave is also available on the WWW
at https://www.octave.org and via the help@octave.org
mailing list.
,frex,time] = specgram(glassclip(:,1),1000,srate,hann(round(srate/10))); [powspect
warning: specgram fft size adjusted to 4410
warning: called from
specgram at line 152 column 5
figure(4), clf
subplot(511)
plot(timevec, glassclip)
xlabel('Time (s) ')
hold on
plot(timevec, filtglass)
hold off
subplot(512), cla
plot(hz, pow(1:length(hz)))
set(gca, 'xlim', [100 2000], 'ylim', [0 max(pow)])
xlabel('Frequency Range Limited (Hz) '), ylabel('Amplitude')
hold on
plot(hz, pow_filt(1:length(hz)), 'r')
hold off
subplot(5,1, 3:5), cla
specgram(glassclip(:,1),1000,srate,hann(round(srate/10)))
hold on
plot(timevec([1 1; end end]),frange([1 2; 1 2]),'k:','linew',2)
set(gca, 'ylim', [0 2000])
hold off
warning: specgram fft size adjusted to 4410
warning: called from
specgram at line 152 column 5
warning: set: allowing linew to match line property linewidth
warning: called from
__plt__>__plt2mm__ at line 295 column 15
__plt__>__plt2__ at line 257 column 14
__plt__ at line 114 column 16
plot at line 235 column 10
warning: set: allowing linew to match line property linewidth
warning: called from
__plt__>__plt2mm__ at line 295 column 15
__plt__>__plt2__ at line 257 column 14
__plt__ at line 114 column 16
plot at line 235 column 10
Specgram works in gnuplot backend on octave environment but doesnot seem to work on notebook / plotly backend
whos
Variables visible from the current scope:
variables in scope: top scope
Attr Name Size Bytes Class
==== ==== ==== ===== =====
ans 1x1 8 double
channel 1x1 8 double
doc_file 1x79 79 char
filtglass 661500x2 10584000 double
fkern 1x2002 16016 double
frange 1x2 16 double
frex 1x2205 17640 double
glassclip 661500x2 10584000 double
hz 1x330751 2646008 double
pkg_dir 1x64 64 char
pnts 1x1 8 double
pow 661500x1 5292000 double
pow_filt 661500x1 5292000 double
c powspect 2205x298 10513440 double
srate 1x1 8 double
time 1x298 2384 double
timevec 1x661500 5292000 double
Total is 5622995 elements using 50239679 bytes